Part Number Hot Search : 
TA124E HCT138 MM3082K DS12R887 8S600A 2SK2595 68HC05 ATMEGA32
Product Description
Full Text Search
 

To Download EM3027IDSSO8B Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 1 www.em microelectronic.com real time clock with i2c or spi, crystal temperature compensation, battery switchover and trickle charger description the em3027 is an u ltra l ow p ower cmos real - time clock ic with two serial interface modes : i2c or spi . the int erface mode is selected by the chip version (see 12 ) . the basic clock is obtained from the 32 . 768 k hz crystal oscillator. a thermal compensation of the frequency is based on the temperature measurement and calculation of the c orrection value. the temperature can be measured internally or be input by an external application to the register. the chip provides clock and calendar information in bcd format with alarm possibility. the actual contents are latched at the beginning of a read transmission and afterwards data are read without clock counter data corruption. an integrated 16 - bit timer can run in zero - stop or auto - reload mode. an interrupt request signal can be provided through int/ irq p in generated from a larm, t imer, v olta ge detector and self - recovery s ystem . an integrated t rickle c harger allows recharging b ackup s upply v b ack from the m ain s upply v oltage v cc through internal resistor(s). the internal device supply will switchover to v cc when v cc is higher than v b ack and vic e versa. the device operates over a wide 1. 4 to 5.5v supply range and requires only 900 na at 5v. it can detect internally two supply voltage levels. applications ? utility meters ? battery operated and portable equipment ? consumer electronics ? white/brown good s ? pay phones ? cash registers ? personal computers ? programmable controller systems ? data loggers features ? fully operational from 2. 1 to 5.5v ? supply current typically 600 na at 1.4 v ? thermal compensated crystal frequency ? oscillator stability 0.5 ppm / volt ? count er for seconds, minutes, hours, day of week, date months, years in bcd format and alarm ? leap year compensation ? 16 - bits t imer with 2 working modes ? two l ow v oltage d etection l evels v l ow1 , v l ow2 ? automatic s upply switchover ? serial communication via i2c (i 2 c - bus specification rev. 03 compatible C see 10.2 ) or spi ( 3 - line spi - bus with separate combinable data input and output ) ? thermometer readable by the host ? trickle c harger to maintain b attery charge ? integrated oscillator capa citors ? two eeprom and 8 ram data bytes for a pplication ? digital self - recovery system ? no busy states and no risk of corrupted data while accessing ? one h our periodical configuration registers refresh ? support for standard ul1642 for lithium b atteries ? standard t emperature r ange: - 40c to +85c ? extended t emperature r ange: - 40c to +125c ? pack ages: tssop8, tssop14, so8. block diagram em microelectronic - marin sa s c l / s c k s d a / s o c l k o u t e m 3 0 2 7 v c c v b a c k w a t c h & a l a r m - s e c o n d s - m i n u t e s - h o u r s - d a y s - w e e k d a y s - m o n t h s - y e a r s t i m e r e e p r o m t e m p e r a t u r e s e n s o r s i c s c l k o e i n t o r i r q x 1 x 2 v r e g o s c i l l a t o r p o w e r m a n a g e m e n t o u t p u t c o n t r o l i 2 c o r s p i
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 2 www.em microelectronic.com table of contents table of contents ................................ ................................ ................................ ................................ ................................ ..... 2 1 packages / pin out configuration ................................ ................................ ................................ ................................ .... 3 2 absolute maximum ratings ................................ ................................ ................................ ................................ .............. 4 2.1 handling procedures ................................ ................................ ................................ ................................ ................. 4 2.2 operating conditions ................................ ................................ ................................ ................................ ................ 4 2.3 crystal characteristics ................................ ................................ ................................ ................................ ............... 4 2.4 eeprom characteristics ................................ ................................ ................................ ................................ .......... 4 3 electrical characteristics ................................ ................................ ................................ ................................ .................. 4 4 em3027 block diagram and application schem atic ................................ ................................ ................................ ......... 6 4.1 block diagram ................................ ................................ ................................ ................................ ........................... 6 4.2 application schematic ................................ ................................ ................................ ................................ ............... 6 4.3 cryst al thermal behaviour ................................ ................................ ................................ ................................ ........ 7 4.4 crystal calibration ................................ ................................ ................................ ................................ ..................... 8 5 memory mapping ................................ ................................ ................................ ................................ .............................. 9 6 definitions of terms in the memory mapping ................................ ................................ ................................ .................. 10 7 serial communication ................................ ................................ ................................ ................................ ..................... 12 7.1 how to perform data transmission through i2c ................................ ................................ ................................ ....... 12 7.2 how to perform data transmission through spi ................................ ................................ ................................ ....... 13 8 functional description ................................ ................................ ................................ ................................ .................... 15 8.1 start after power - up ................................ ................................ ................................ ................................ ................ 15 8.2 normal mode function ................................ ................................ ................................ ................................ ............. 15 8.3 watch and alarm function ................................ ................................ ................................ ................................ ....... 15 8.4 timer function ................................ ................................ ................................ ................................ ......................... 16 8.5 temperature measurement ................................ ................................ ................................ ................................ ..... 16 8.6 frequency compensation ................................ ................................ ................................ ................................ ........ 16 8.7 eeprom memory ................................ ................................ ................................ ................................ ................... 17 8.8 ram user memory ................................ ................................ ................................ ................................ .................. 18 8.9 status register ................................ ................................ ................................ ................................ ........................ 18 8.10 interrupts ................................ ................................ ................................ ................................ ............................ 18 8.11 self - recovery system (srs) ................................ ................................ ................................ ............................. 19 8.12 regis ter map ................................ ................................ ................................ ................................ ...................... 19 8.13 crystal oscillator and prescaler ................................ ................................ ................................ ......................... 19 9 power management ................................ ................................ ................................ ................................ ................ 20 9.1 power supplies, switchover and trickle charger ................................ ................................ ................................ ... 20 9.2 low supply detection ................................ ................................ ................................ ................................ ............. 21 10 ac characteristics ................................ ................................ ................................ ................................ .................. 22 10.1 ac characteristics C i2c ................................ ................................ ................................ ................................ ..... 22 10.2 i2c specification compliance ................................ ................................ ................................ ............................. 23 10.3 ac characteristics C spi ................................ ................................ ................................ ................................ ..... 24 11 package information ................................ ................................ ................................ ................................ ............... 26 11.1 tssop - 08/14 ................................ ................................ ................................ ................................ ..................... 26 11.2 so - 8 ................................ ................................ ................................ ................................ ................................ ... 27 12 ordering information ................................ ................................ ................................ ................................ ............... 28
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 3 www.em microelectronic.com 1 packages / pin out configuration pin name function 1 x1 32 .768 khz crystal input 2 x2 32 .768 khz crystal output 3 v back backup supply 4 v ss ground s upply 5 sda serial data 6 scl serial clock 7 i rq /clk out interrupt request /c lock o utput 8 v cc positive supply table 1 pin name function 1 x1 32 .768 khz crystal input 2 x2 32 .768 khz crystal output 3 si serial data i nput 4 v reg regulated voltage C back backup sup ply 6 int interrupt request output (open drain active low) 7 v ss ground supply 8 so serial data o utput 9 sck serial clock input 10 cs chip s elect input 11 irq/ clk o ut interrupt request/ clock o utput 12 v cc positive supply 13 c lk oe clock outp ut enable clkoe = 0 clkoe = 1 table 2 sck cs vss spi tssop14 si em3027 int irq/clkout v cc clkoe nc x2 v back v reg x1 x2 sda/so/sio i2c v reg so v cc sda vss x 1 x 2 em 3027 so 8 - tssop 8 v b ack scl i rq / clk out
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 4 www.em microelectronic.com 2 absolute maximum ratings parameter symbol conditions maximum voltage at v cc v ccmax v ss + 6.0v minimu m voltage at v cc v ccmin v ss C 0.3v maximum voltage at any signal pin v max v cc + 0.3v minimum voltage at any signal pin v min v ss C 0.3v maximum storage temperature t stomax +150c minimum storage temperature t stomin - 65c electrostatic discharge maximum to mil - std - 88 3c method 3015.7 with ref. to v ss v smax 2000 v table 3 stresses above these listed maximum ratings may cause permanent damages to the device. exposure beyond specified operating conditions may affect device reliability or cause malfunction. 2.1 handling procedures this device has built - in protection against high static voltages or electric fields; however, anti - static precautions must be taken as for any other cmos component. unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the voltage range. unused inputs must always be tied to a defined logic voltage level. 2.2 operating conditions parameter symbol min typ max unit op erating temp. t a - 40 +125 c supply voltage (note 1) v c c , v b ack 1. 4 5.0 5.5 v c apacitor at v cc , v b ack c d 100 nf table 4 note 1: refer to paragraphs 9.1 and 9.2 2.3 crystal c haracteristics parameter symbol min typ max unit f requency f 32.768 khz load capacitance c l 7 8.2 12.5 pf series resistance r s 70 110 k ? table 5 crystal reference : micro crystal cc5v - t1a web: www.microcrystal.com 2.4 eeprom c haracteristics parameter symbol min typ max unit r ead voltage v r ead 1. 4 v p rogramming v oltage v p rog 2.2 v eeprom programming time t p rog 30 ms write/erase cycling 5000 cycles table 6 3 electrical characteristics pa rameter symbo l test conditions v cc temp. c min typ max uni t total supply current with crystal i cc all outputs open, rs < 70 k, v back = 0v i2c: sda, scl at v cc , clk/int=0 ss 1.4 - 40 to 125 0.6 4.6 a 3.3 - 40 to 125 0.8 5.2 5.0 - 40 to 125 0.9 5.5 total supply current with crystal i back all outputs open, rs < 70 k, v cc = 0v, v back = 3.3v i2c: sda, scl at v back , clk/int=0 ss 0 - 40 to 125 0.8 5.2 a dynamic current i2c i dd scl = 100khz (s ee note 1) 1.4 - 40 to 125 15 a scl = 400khz (see note 1) 3.3 - 40 to 125 40 scl = 400khz (see note 1) 5.0 - 40 to 125 60
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 5 www.em microelectronic.com parameter symbol test conditions v cc temp. c min typ max unit dynamic current spi interface i dd sck = 200 khz (s ee note 2) 1.4 - 40 to 125 18 a sck = 1 mhz (see note 2) 3.3 - 40 to 125 55 sck = 1 mhz (see note 2) 5.0 - 40 to 125 75 low supply detection level1 v low1 relative to v cc - 40 to 125 1.8 2.1 v low supply detection level2 v low2 relative to v cc - 40 to 125 1.0 1.4 v switchover hysteresis v hyst v cc with respect to v back = 3.0v - 40 to 125 20 mv input parameters low level input voltage v il cs, clkoe, si, scl/sck, sda 1.4 to 5.0 - 40 to 125 0.2 v cc v high level input voltage v ih - 40 to 125 0.8 v cc input leakage i in 0.0 < v in < v cc 1.4 to 5.0 - 40 to 125 - 1.5 1.5 a output parameters low level output voltage v ol i ol = 0.4 ma 1.4 - 40 to 125 0.2 v high level output voltage v oh i oh = 0.1 ma 1.0 low level output voltage v ol i ol = 1.5 ma 3.3 - 40 to 125 0.25 v high level output voltage v oh i oh = 1.5 ma 2.7 low level output voltage v ol i ol = 5.0 ma 5.0 - 40 to 125 0.8 v high level output voltage v oh i oh = 2.0 ma 4.5 output hiz leakage on int i leak_out int no t active 1.4 to 5.0 - 40 to 125 - 1.5 1.5 a oscillator start - up voltage v sta t sta < 10s - 40 to 125 1.2 v start - up time t sta 5.0 - 40 to 125 1 3 s frequency stability over voltage ? ? 1.8v cc a = +25c 25 0.5 2 ppm/ v input capacitance on x1 c in t a = +25c, f = 32.768khz, v meas = 0.3v (note 3) 25 16.5 pf output capacitance on x2 c out t a = +25c, f = 32.768khz, v meas = 0.3v (note 3) 25 15.0 trickle charger cur rent limiting resistors r80k v cc =5.0v, v back =3.0v 25 80 k cc =5.0v, v back =3.0v 25 20 r5k v cc =5.0v, v back =3.0v 25 5.0 r1.5k v cc =5.0v, v back =3.0v 25 1.5 thermometer precision t e v low1 < v cc table 7 the following parameters are tested during production test: i dd , v low1 , v low2 , v il , v ih , v ol , v oh , i in , i leak_out the parameters i cc , v hyst , v sta , t sta , c in , c out , ? f/(f* ? v), t e are characterised during the qualification of the ic. note s : 1. sda = v ss , continuous clock applied at scl (v il _ scl < 0.05v, v ih_scl > 0.95v cc ) 2. cs, si = v cc , continuous clock applied at sck, so not connected. (v il _ s ck < 0.05v cc , v ih_sc k > 0.95v cc ) note that there is a 100k pull - down resistor on cs. 3. v meas : peak to peak amplitude during capacitance measurement 4. below 0 c, a negative slope on vcc will stop the oscillator during a time which may be as long as 1 second. this is not depend e nt on s lope and occurs with a slew rate as low as 2v/sec. 5. some chip versions do not support trickle charger and switchover features.
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 6 www.em microelectronic.com 4 em3027 block diagram and application schematic 4.1 b lock d iagram 4.2 application schematic crystal layout example figure 1: application schematic voltage monitoring voltage regulator xtal oscillato r prescaler rtc ram eeprom control i2c spi inputs stages output buffer s thermometer v back v cc v ss x 1 x 2 scl/sck si cs sda/so clkoe int clkout v r eg sda/so 32.768 khz switchover v high x 1 x 2 v ss = 0v v cc lithium battery or super cap v cc supply protection resistor * x1 * optional for lithium batteries (<1k ? ) x2 crystal em3027 clkout int clkoe v cc v back controller cs, scl/sck sda/so si serial interface v ss v ss for application use c d c d
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 7 www.em microelectronic.com 4.3 crystal t hermal b ehaviour the frequency of the crystal is dependent on the temperature concurring with the following diagram: figure 1 : c rystal thermal behaviour t o C t urnover temperature [c] f o C c rystal frequency when t o [hz] the foll owing formula expresses a compensation value to be used during frequency correction . qc oef C t hermal quadratic coefficient [ppm/c 2 ] t C a ctual temperature [c] t o C t urnover temperature [c] xtaloffset C c rystal offset at t o [ppm] comp_val C c ompensation value result [ppm] the o scillator f requency is adjusted according to the equation above by using coefficients located in the eeprom control page and the temperature. the actual temperature can be obtained from the internal thermometer or from temp register updated externally by an application. the principle of the frequency comp ensation is based on adding/ removing of pulses. example 1 : qcoef=0.035; t o =25; xtaloffset= C 100 example 2 : qcoef=0.035; t o =25; xtaloffset=+10 0 - 400 - 300 - 200 - 100 0 temperature [c] t o +100 t o +50 t o t o - 50 t o - 100 t [c] ? f f o [ppm] -400 -300 -200 -100 0 100 200 300 400 -50 0 50 100 150 tem perature [ppm ] compensation value crystal error -600 -400 -200 0 200 400 600 -50 0 50 100 150 temperature [ppm] compensation value crystal error xtaloffset 2 to) (t qcoef comp_val ? ? ? ?
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 8 www.em microelectronic.com 4.4 crystal c alibration in order to compensate temperature dependency of the used crystal, correct values of xtaloffset, qcoef and t o parameters shall be stored in eeprom control page. user is advised to follow these steps in order to compute the pa rameters in a correct way: 1) supply the chip from v cc pin . 2) set fd0 = fd1 = 0 . set clkoe p in to 1 . this provides the uncompensated frequency signal from the crystal oscillator directly on p in clkout. 3) measure output frequency f o at different tempera tures ( at least five measurements in equidistant points in the whole desired temperature range are recommended). please note that quartz crystal needs few minutes to stabilise its frequency at a given temperature. 4) compute frequency deviation f err in ppm of output frequency f o from the ideal (target) frequency f l = 32.768hz in all measured points as follows: f err = 10 6 (f o - f l )/f l . 5) find a quadratic regression of the measured dependency in form: f err = - c 1 (t C c 2 ) 2 + c 3 or f o = at 2 + bt + c. 6) th e n real values of the searched parameters can b e obtained from the following relations: qcoef real = c 1 = - a, t 0_real = c 2 = - b/(2a), xtaloffset real = c 3 = c C b 2 /(4a). 7) the v alues to be stored in eeprom control page h ave to be corrected in the following way: qcoef = 4096*(1.0 5 *qcoef real ), t 0 = t 0_real - 4, xtaloffset = 1.0 5 *xtaloffset real .
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 9 www.em microelectronic.com 5 memory mapping table 8 unused bit ( re ad as zero ; write has no influence) address page addr hex description range bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0 [6..3] [2..0] 00000 000 0x00 onoffctrl clk/int td1 td0 sron eerefon tron tion waon default 1 0 0 1 1 0 0 1 001 0x0 1 irqctrl srinte v2inte v1inte tinte ainte default 0 0 0 0 0 010 0x02 irqflags ---- srf v2f v1f tf af 011 0x03 status ---- eebusy pon sr vlow2 vlow1 100 0x04 rstctrl ---- sysres 00001 000 0x08 watch seconds 0 C 59 b cd 001 0x09 watch minutes 0 C 59 bcd 010 0x0a watch hours 0 - 23 bcd 1 - 12 bcd s12/24 pm/2 hours tens 011 0x0b watch date 1 C 31 bcd 100 0x0c watch days 1 C 7 bcd 101 0x0d watch months 1 C 12 bcd months tens 110 0x0e watc h years 0 C 79 bcd 00010 000 0x10 alarm seconds 0 C 59 bcd seceq 01 0x11 alarm minutes 0 C 59 bcd mineq 010 0x12 alarm hours 0 - 23 bcd 1 - 12 bcd houreq pm/2 hours tens 011 0x13 alarm date 1 C 31 bcd dateeq 100 0x14 alarm day s 1 C 7 bcd dayeq 101 0x15 alarm months 1 C 12 bcd montheq months tens 110 0x16 alarm years 0 C 79 bcd yeareq 00011 000 0x18 timer low byte 0 - 255 - - - - - - - - 001 0x19 timer high byte 0 - 255 - - - - - - - - 00100 000 0x20 temp - 60 - 195 c - - - - - - - - 00101 000 0x28 001 0x29 00110 eectrl ---- r80k r20k r5k r1.5k fd1 fd0 then thper default 0 0 0 0 0 0 1 0 xtaloffset 121 sign - - - - - - - default - - - - - - - - qcoef ---- - - - - - - - - default - - - - - - - - turnover 4 - 67 c - - - - - - default - - - - - - 00111 000 - 111 0x38 - 0x3f 001 years tens hours units seconds tens temperature page years units date units months units days units seconds units 8 bytes of data ramdata ---- control page watch page alarm page timer page seconds units minutes units hours units 010 0x32 011 ram page (user data ram) 0x33 seconds tens minutes tens date tens 0x 31 minutes tens eedata ---- eeprom user data (2 bytes) eeprom data page - configuration registers eeprom control page - configuration registers days units 000 0x30 years tens date tens years units date units months units minutes units
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 10 www.em microelectronic.com notes and settings: - only pages 0 to 7 are used. unused pages are for test purposes. the application should not write into unused page s and ad d resses . - the crys tal o ffset must be set to within 121 ppm. - zero values are read from unused addresses . - watch, alarm, timer pages ha ve to be set by an application before use. - the bit 7 (msb) of the alarm r egisters (seceq, mineq.) have to be set to 1 to perform the comparison. (s ee p aragraph 8.3 ) 6 d efinitions of terms in the memory mapping control page - register onoffctrl clk/int selects if clock or interrupt is applied onto the irq/ c lkout p in ( 0 = irq output ; 1 = c lkout output ) C c lkout output is the default state after reset td0, td1 selects decrement rates for timer (32 hz after reset) sr on enables self - recovery function (on after reset) eerefon enable s configuration r egisters refresh each 1 hour (on after reset) tron enables timer auto - reload mode (0 C reload disabled; 1 C reload enabled) tion enables timer (off after reset) waon enables 1 hz clock for watch (on after initialisation) control page - register irqctrl srinte self - recovery interrupt enable v2inte vlow 2 interrupt enable v1inte vlow 1 interrupt enable tinte timer interrupt enable ainte alarm interrupt enable control page - register irqflags sr f self - recovery interrupt flag (bit is set to 1 when self - reco very reset is generated) v2f vlow 2 interrupt flag (bit is set to 1 when power drops below v low2 ) v1f vlow 1 interrupt flag (bit is set to 1 when power drops below v low1 ) tf timer interrupt flag (bit is set to 1 when timer reaches zero) af alar m interrupt flag (bit is set to 1 when watch matches alarm) note: flags can be cleared by 0 writing. control page - register status eebusy eeprom is busy (bit is set to 1 when eeprom write or configuration registers refresh is in progress) ( read onl y ) pon power on (bit is set to 1 at power on; clear by 0 writing) sr self - recovery reset or system reset detected (clear by 0 writing) v low 2 voltage level v cc or v back below vlow2 level (clear by 0 writing) v low 1 voltage level v cc or v back b elow vlow1 level (clear by 0 writing) control page - register rstctrl sysres system reset register ; writing 1 will initiate restart of the logic ( w atch , alarm and timer part s excluded) . after the restart, status bit sr is set. the register is cleared after restart of the logic. watch page - register s watch s econds, watch m inutes, watch h ours, watch d ate, watch d ays, watch m onths, watch y ears watch information (bcd format) s12/24 12 - hours or 24 - hours format selection; 12 - hours: s12/24 = 1 , 24 - hours : s12/24 = 0 pm/2 s12/24 = 0 pm/2 represents value 2 of tens, s12/24 = 1 pm/2 = 1 represents pm (afternoon) , pm/2 = 0 represents am (morning) alarm page - register s alarm s econds, alarm m inutes, alarm h ours, alarm d ate, alarm d ays, alarm m onths, alarm y ears alarm information (bcd format) pm/2 s12/24 = 0 pm/2 represents value 2 of tens, s12/24 = 1 pm/2 = 1 represents pm (afternoon), pm/2 =0 represents am (morning)
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 11 www.em microelectronic.com timer page - registers timlow, timhigh t imlow timer value (low byte) timhigh timer value (high byte) temperature page - register temp temp temperature (range from - 60 c to 190c with 0c corresponding to a content of 60 d ) eeprom data page - register eedata eedata general purpose eeprom data byte s eeprom control page - register eectrl r 80 k, r 20 k, selects t rickle charger resistor s between v h igh and v back r 5 k, r1 .5 k fd0, fd1 s elects clock frequency at irq/c lkout p in . then enables t hermometer (0 = disa bled; 1 = enabled ) thper selects thermometer activation period (0 = 1 second; 1 = 16 seconds) eeprom control page - register xtaloffset xtaloffset crystal frequency deviation at turnover temperature t o in ppm . example: value 63 d is related to 60 p pm . xtaloffset=1.05*xtaloffset real w here xtaloffset real is real value of crystal frequency deviation at turnover temperature of the used crystal in ppm. note : coefficient 1.05 (exactly 1.048576) is the result of the inte rnal ly used frequency compensating method. eeprom control page - register qc oef qc oef thermal quadratic coefficient of the crystal . e xample: value 151 d is related to 0.035 ppm/c 2 , qcoef = 4096 x 1.05 x qcoef real , w here qcoef real is rea l value of thermal quadratic coefficient of the crystal in ppm/ c 2 . eeprom control page - register turnover turnover turnover temperature of the crystal (values 0 to 63 d are related to temperature 4 to 67 c) . example: value 21 d is related to 25 c . t 0 = t 0_real C 4, w here t 0_real is real value of turnover temperature of the crystal in c . ram page - register ramdata ramdata general purpose ram data bytes
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 12 www.em microelectronic.com 7 serial communication depending on the em3027 version, the serial communi - cation is performed in i2c or spi mode. a se rial communication with the em3027 starts with a transmission start and terminates with the transmission stop. transmission start i2c C start condition spi C cs goes to 1 transmission stop i2c C stop condition spi C cs goes to 0 when the transmission start is detected , a copy of the content of the addressed watch - , alarm - , timer - and temperature - register is stored in to a cache memory. data for a following read access are provided from th is cache memory. data in t he cache memory are stable until the trans - mission stop. during a write access, data are written into the cache memory. when the transmission stop of a write trans - mi ss ion is detected , the content of modified registers in the cache memory is copied ba ck into the watch - , alarm , timer - and/ or temperature - register . 7.1 how to perform data transmission through i2c the i2c protocol is a bidirectional protocol using 2 wires for master - slav e communication: scl (clock) and sda (data ). the two bus lines are dri ven by open drain outputs and pulled up externally. msb is sent first. the communication is controlled by the master. to start a transmission , the master applies the start condition and generates the scl clocks during the whole transmission. the master te rminates the transmission by sending the stop condition. the first byte contains the 7 bit slave address and the r/w bit. the slave address must correspond to the fixed slave address of the em3027. after each byte, the receiver outputs an acknowledge bit ack to confirm correct recept of the byte by a 0 level . at a write transmission (r/w = 0), the master sends slave address, register address and data bytes. in the em3027, the upper 5 bit s of a register addr ess form a page address , the 3 lower bits a re an auto - increment ing sub - address . the page - address is defined by a write transmission. during a transmission, the 3 lower address bits are internally incremented after each data byte. at a read transmission (r/w = 1), the slave sends data and the master gives the ack bit(s). the page - address shall be defined by a write transmission , complet ed with the stop condition . the 3 lower address bits are incremented when an ack is received. if ack is not received, no auto - increment of the address is ex ecuted and a following read outputs data of the same address. the em3027 works as slave. its slave address is fixed to 1010110. i2c : write transmission slave address r /w s 1010110 0 a ck s address a ck s data byte (1) a ck s data byte (n - 1) a ck s data byte (n) a ck s p i2c : read transmission slave address r /w slave address r/w s 1010110 0 a ck s address a ck s p s 1010110 1 a ck s data byte (1) a ck m data byte (n) a ck m p s ... start condition s ent by the maste r r/w ... read/write select (0: master writes data) ack s ... acknowledge from the receiver (slave) p . .. stop condition ack m ... acknowledge from the receiver (master)
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 13 www.em microelectronic.com figure 2 : i2c c ommunication noise suppression c ircuitry is implemented r eject ing s pikes shorter than 50ns on scl and sda bus l ines . 7.2 how to perform data transmission through spi the spi interface connects master and slave circuits. 4 c onnections are use d : cs = chip select, sck = serial clock, si = serial data input and so = serial data output. spi is a byte oriented protocol with ms b first mode. data are changing on sck falling edge and sampled on rising edge . a transmission is start ed by the master by rising the cs input of the selected slave to 1. the transmission is terminated by the master by putting 0 level the cs input. the first bit is the r/w bit, r/w = 0 means a write transmission, where the master sends the data via t he si line . r/w = 1 defines a read transmission, where the slave outputs the data on the so line . the following 7 bits of the first byte form the address of the register in the em3027, where the data are written or read. (msb is first bit at position 2 in this address byte.) the not transmitted 8 th bit of the register address is set internally to 0. in the em3027, the upper 5 bit s of an address form a page address , the 3 lower bits are a n auto - incrementing sub - address . the page - addres is defined by a write transmission. during a transmission, the 3 lower address bits are incremented internally after each byte. during a write transmission, the master defines the register address and sends then data bytes, using the auto - increment of the lower add ress part (bit 2 to 0) within the em3027. the page address is fixed until a new transmission is started. so data output of em3027 is in hi - z state during the write transmission . if read transmission is initiated , data are output after the address byt e by the em3027 . the lower part of the address (bit 2 to 0) is automatically incremented after each data byte . the page address is not changed until a new transmission is started. so is in hi - z while the address byte is sent. during data output by so, t he si input has no influence. when cs is at 0 level, so is hi - z and sck, si can be left floating . so and si can be connected together to form a 3 - wire interface with cs, sck and serial data in put /out put . the em3027 works as slave. the cs input has a p ull - down resistor of 100 k. 1 2 9 8 7 6 scl 1 2 8 7 6 9 start condition stop condition a6 a5 ack sda r/w a1 a0 d7 d6 ack d0 d2 d1 slave address data byte, send/receive as many as needed read/write selection bit
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 14 www.em microelectronic.com figure 3 : spi w rite t rans mission figure 4: spi read transmission cs transmission stop transmission start a6 r/w a5 a4 a3 a2 a1 a0 si sck d7 d6 d1 d0 so hiz hiz so hiz cs transmission stop transmission start sck a6 r/w a5 a4 a3 a2 a1 a0 d7 d6 d1 d0 si
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 15 www.em microelectronic.com 8 functional description 8.1 start after power - up a the c hip is in reset state when the supply voltage is below an internal threshold level (pon in status register 0x03 goes to 1). when the supply level is higher than this threshold voltage, the reset is released. b when the supply voltage is higher th an the oscillator start - up voltage, the basic clocks for watch and control logic become active after the oscillator start time. c with clocks present, the voltage detector starts in fast mode to measure the supply voltage. when a voltage higher than vlow2 is detected, the fast detection mode is stopped and the eeprom read is enabled. d c onfiguration registers are loaded with the configuration data read from the eeprom (addresses from 0x 28 to 0x33). e if thermometer is enabled (then=1 and v low1=0 ), temperature is measured and compensation value for frequency correction evaluated. f the em3027 starts its normal function, depending on the supply voltage level applied. 8.2 normal mode function the chip has following functions in normal mode: 1. voltage detection C the voltage detection is executed each second . 2. temperature measurement C it is executed , if thermometer is enabled (then =1 ) and vlow1=0 . 3. frequency compensation C the compensation of the oscillator frequency works continuousl y. 4. configuration registers refresh C the eeprom is read each hour to refresh the content of the configuration registers (supply voltage must be above vlow2 for eeprom read ) . 5. watch/alarm C the watch function is contin u ously active, whereas the alarm func tion depends on its activation. 6. timer C is active when enabled. 7. self - recovery system C is enabled by default (can be disabled by the application) . 8. serial interface C the communication works if v cc > v cc_min and v cc > v back . 8.3 watch and alarm function the watch part provides timing information in bcd format . the timing data is composed of seconds, minutes, hours, date, weekdays , months and years. the corresponding values are updated every second. the watch part setup is provided by write transmission into the watch page (address 0x08h to 0x0eh) . after the trans miss ion , the w atch is restarted from the setup values after one second . the alarm function is activated by setting and enabling the alarm registers (address 0x10h to 0x16h) . each alarm byte has its own enable bit. it is the bit 7 . recommended combinations of enable d bits are described in the table below. seceq mineq hrseq dateeq dayseq montheq yeareq a l_period 1 0 0 0 0 0 0 min 1 1 0 0 0 0 0 hrs 1 1 1 0 0 0 0 day 1 1 1 1 0 0 0 month 1 1 1 1 0 1 0 year 1 1 1 0 1 0 0 week table 9 : alarm period selection - both wat ch and alarm parts must be set by an application before us e - the bits seceq to yeareq enable the comparison of the correspo nding registers
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 16 www.em microelectronic.com 8.4 timer function the 16 - bit count down timer can be enabled/disabled by tion bit. the timer input frequency is selected by td1, td0 bits according to the following table: td1 td0 timer frequency 0 0 32 hz 0 1 8 hz 1 0 1 hz 1 1 0.5 hz tab le 10 : timer f requency s election the timer can run in zero - stop or auto - reload mode (tron bit : 0 = zero - stop mode, 1 = auto - reload mode ). when tron = 0 , then it is possible to read current value of the timer. if tron = 1 , then last written value is read from cache memory. the value in the cache memory is used as the new value for reloading (auto - reload mode ) . f requency selection (td1, td0) and mode selection (tron) can be written only when the timer is stopped (tion = 0) . timer values (timlow, timhigh) can be written only when the timer is stopped ( tion = 0 and tron = 0 ) . note: the timer page can also be used as a general purpose registe r when the timer function is not used. 8.5 temperature measurement the integr ated thermometer has a resolution of 1c. the thermomet er is disabled when then = 0 and enabled when then = 1 . by default, the thermometer is enabled. thermometer period is selectable by thper bit according to the table below: thper period in seconds 0 1 s 1 16 s table 11 : thermometer p eriod the thermometer is automatically disabled when vlow1 stat us bit is at 1. when the thermometer is disabled (then = 0), the temp register can be written. temp register uses a cach e memory to keep stable value during a whole transaction (read/write). 8.6 frequency compensation there is a frequency compensation unit (fcu) inside em3027. fcu compensates quartz crystal native frequency in dependency on actual compensation value (comp_va l). fcu is always running. during chip power - up, i f then = 1 and vlow1 = 0 temperature measurement is enabled and comp_val is computed. otherwise , c omp_val is set to 0 ppm . in normal mode , n ew compensation value is computed each 32 seconds . the onl y exception is when then = 1 and vlow1 = 1. in this case, temperature measurement and comp_val computation are blocked and fcu uses the last computed compensation value. for the evaluation of comp_val , actual content of temp register (0x20) is used. the compensation value is computed according to the equation described in paragraph 4.3 . content of temp register is updated either after a temperature measurement (when then = '1' and vlow1 = '0') or after tem p register write transaction (when then = '0'). after power - up content of temp register is undefined. if thermometer is disabled (then = '0') user is advised to periodically update temp register with actual ambient temperature in order to have correct inp ut data for comp_val computation.
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 17 www.em microelectronic.com 8.7 eeprom memory be fore any eeprom access (read/write), the bit eerefon has to be cleared by the application to prevent from access collision with the configuration register s . then the application has to read eebusy bit and if eebusy = 0 , then eeprom access can be started . after the write command ( at transmission stop) the current state of eeprom writing is monitored by eebusy register bit at 1. eebusy goes to 0 when eeprom writing is finished. note: v cc must be applied during the whole eeprom write (i.e. until eebusy = 0) and must be higher than v prog . after eeprom write command, eebusy bit is set to 1 for a time period depen d ing on that how many b ytes of eeprom data or control page were written: eeprom w rite o peration eebusy bit set to 1 for [ms] any write operation into eeprom data page (one or two bytes within one transaction) 3 5 single b yte write operation into eepro m control page 97 multiple b yte write operation into eeprom control page (two, three or four bytes within one transaction ) <135 8.7.1 eeprom control page this part is composed of 4 bytes purposed for miscellaneous function control and for crystal compensa tion constants. eectrl byte contains: trickle cha r ge r selectors (r 80 k, r 20 k, r 5 k, r1 .5 k); output clock frequency selector (fd1, fd0); thermometer enable and thermometer period selector. clear eerefon eebusy = 0 ? no read eeprom clear eerefon eebusy = 0 ? no next read ? set eerefon no yes yes eebusy = 0 ? no yes yes set eerefon yes no next write ? write eeprom
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 18 www.em microelectronic.com 8.7.2 clock output output clock frequency is selected by fd1, fd0 bits in eect r l register. fd1 fd0 select clock out put description 0 0 32 . 768 k hz from c rystal o scillator , without frequency compensation 0 1 1024 hz with frequency compensation 1 0 32 hz 1 1 1 hz table 12 : output clock frequency selection 8.7.3 configuration registers a ll the configuration data from eeprom (i.e. ee c trl, xtaloffset, qcoef, turnover, eedata ) is hold in configuration registers. data from eeprom is loaded to these registers during power - up sequence and is refr eshed each hour, if configuration registers refresh feature is enabled (eerefon = 1). regular refresh of configuration registers prevent s their content to be corrupted by strongly polluted electrical environment (emc problems, disturbed power supply , etc.) . it is recommended to enable configuration registers refresh feature. 8.7.4 eeprom u ser m emor y two byte s of the memory are dedicated for the application (addresses 0x28 and 0x29) . 8.8 ram u ser m emory ram user memory size is 8 bytes (addresses 0x38 to 0x3f) . the state of the ram data after power - up is undefined. 8.9 status r egister the purpose of eebusy bit is to inform the user about current status of the eeprom operations. eebusy C status of eeprom controller (if eebusy = 1 , then configuration registers refresh or eeprom write is in progress) the purpose of the following status bits is to record status of power supply v oltage and self - recovery system /system reset behaviour . pon C status of power - on vlow1 C status of vlow1 voltage detection v low2 C status of vlow2 voltage detection sr C status of the self - recovery system /system reset if one of these status bits is set, it can be cleared only by writing 0 , there is no automatic reset if the set condition disappears. 8.10 interrupts there are five interrupt sources which can output an interrupt on (int and/or irq/clkout ) p in s . the request is generated when at least one of irqflags goes to 1 (or function). a f C interrupt is provided when watch time reaches alarm time settings and compari son is enabled t f C interrupt is provided when timer reaches zero v1f C interrupt is provided when supply v oltage is below vlow1 ( when vlow1 status bit is set ) v2f C interrupt is provided when supply v oltage is below vlow2 ( when vlow2 status bit is set ) s rf C interrupt is provided when self - recovery system invoked internal reset ( when sr status bit is set ) each interrupt source has its own interrupt enable (a i nte, t i nte, v1inte, v2inte, srinte ). when the interrupt enable is 1 then the appropriate interr upt source is enabled .
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 19 www.em microelectronic.com i nterrupt flags (irqflags) are cleared by 0 writing into the appropriate bit. in case of v1f, v2f and srf bits, i t i s necessary to clear also the corresponding status bits (status) after interrupt bit. 8.11 self - recovery s ystem (srs) the purpose of the self - recovery system (srs) is to generate an internal reset in case the on - chip state machine goes into a deadlock. the function is based on an internal counter that is periodically r eset by the c ontrol logic. if the counter is not res et on time, this reset will take place. it is executed after two voltage monitoring periods at the latest, i.e. 2s or 32s (thper bit). a possible s ource of a deadlock could be disturb ed electrical environment (emc problem, disturbed power supply, etc.). srs sets st atus bit sr and resets the internal logic , except watch, alarm and tim er parts (i.e. time information s are not affected). furthermore, if the srs interrupt is enabled (srinte='1'), the srf flag is set after the internal chip reset. note, that sr on = '1' and srinte = '0' after the reset. after the internal reset, the device starts with the power - up sequence (see paragraph 8 .1 ). srs is automatically enabled after power - up (sron bit). it can be disabled by writing '0' into the sron bit in the cont rol page . 8.12 register map th e address range of the em3027 is divided into pages. the page is addressed by the five most significant bits of the address (bits 6 3) . the three low significant bits of the address provide selection of registers inside the pa ge. during address incrementing the three low significant bits (2 0) are changed . the page address part is fixed during the whole data transmission . 8.13 crys tal o scillat or and prescaler the 32.768 khz crys tal oscillator and the clock divider provide the t iming signal s for the functional blocks. the p rescaler block is responsible for frequency division of the 32.768 kh z clock signal from the crys tal oscillator. divided frequency is then distributed between other blocks inside the chip , including watch, time r and control logic. two capacitors c in and c out are integrated on chip C see figure 5 . figure 5 : oscillator capacitors x 1 x 2 c in c out
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 20 www.em microelectronic.com 9 p ower management figure 6 : power m anagement 9.1 power suppl ies , s witchover and trickle charge r the device can be supplied from the v cc p in or from the v b ack p in . the s witchover block implemented inside the chip compares v cc and v b ack voltages and connects the higher of them to the internal v h igh net that supplies the chip. nevertheless, the communication p in s (scl, sda or cs, sck, si, so) are supplied from the v cc p in . for that reason, when serial interface ( i2c or spi) is used , the chip has to b e supplied from v cc . (i.e. v cc > v back ). by setting of a trickle charger bit in register ee c trl , a resistor can be inserted between v back and v high voltage. in this way , a rechargeable battery or a super - cap can be charged from the v cc voltage, as long as v cc > v back . there are 4 selectable resistors connected in parallel with typic al value s of 80k, 20k, 5k and 1.5k . one or more resistors can be selected by eectrl bits setting . if a lithium battery shall be connected to v back pin, a protection re sistor of value up to 1k can be connected in series with it. in this way, in case of em3027 device damage resulting in short between both supply pins , charging current from the v cc supply can be reduced to its allowed maximum level as required by ul1642 s tandard . figure 7 : em3027 o perating v oltage a reas 5.5v 3.0v 4.0v 5.0v 2.0v 1.0v 0v supply voltage 2.2v 1.4v em3027 fully operating according datasheet (clock, thermometer, thermocompensation) clock operating with thermocompensation using either previously in fully operating mode measured or by user stored temperature value; no eeprom write serial communication is enabled, if vcc > vccmin and vcc > vback vccmax vlow1 vprog eeprom write if vcc > vprog min max min max vlow2 vccmin i/o switchover logic, eeprom, thermometer, voltage monitor regulator 2.9v xtal oscillator 4x trickle charger resistors v cc
v back v reg v high
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 21 www.em microelectronic.com 9.2 low supply detection the supply voltage level is monitored periodically versus vlow1 and vlow2 levels. the monitoring rate is one second . when the voltage monitoring is runni ng , a higher current consumption for few milliseconds occurs . at the power - up of the device, as long as the supply voltage stays below vlow2, the monitoring rate is accelerated . to enable normal operation, the chip must be supplied with a voltage above vl ow2 , to enable the readout of initialization data from eeprom and to stop the higher current consumption . when the supply voltage drops from the normal range ( from 2. 1 v to 5 .5v) below vlow1 , the vlow1 status bit is set to 1 by the voltage monitoring sys tem . when bit vlow1 is at 1, the thermometer is disabled and the automatic computation of the thermal compensation value (comp_val) for frequency correction is inhibited. in this case , t he last computed compensation value is used. to leave the vlow1 s tatus, the supply voltage must be increased above the vlow1 level and a 0 value must be written into the vlow1 status bit via the serial interface. when the supply voltage drops below the vlow2 level, the vlow2 status bit is set by the voltage monitorin g system. the vlow2 status bit disables the read out of the eeprom. to leave the vlow2 status, the supply voltage must be increased above the vlow2 level and a 0 value must be written into the vlow2 status bit via the serial interface. below vlow2 lev el, device functionality is not guaranteed and register contents can be corrupted. therefore, i f vlow2 status bit is set, it is recommended to perform system reset by writing of 1 into sysres bit in rstctrl page and afterwards update content of watch, al arm and timer registers.
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 22 www.em microelectronic.com 10 ac characteristics 10.1 ac characteristics C i2c v ss = 0v and t a = - 40 to +125c, unless otherwise specified parameter symbol conditions min typ max units scl clock frequency f scl vcc ? 3.0 v 400 khz vcc > 1.8v 300 vcc > 1. 4 v 100 bus free time between stop and start condition t buf vcc ? 3.0 v 0. 6 s vcc > 1.8v 0. 8 vcc > 1. 4 v 1.0 hold time (repeated) start condition t hd:sta vcc ? 3.0 v 0. 3 0.4 0.5 s vcc > 1.8v vcc > 1. 4 v l ow period of scl clock t low vcc ? 3.0 v 1.3 s vcc > 1.8v 1.7 vcc > 1. 4 v 4.5 high period of scl clock t high vcc ? 3.0 v 0. 6 s vcc > 1.8v 0. 7 vcc >1.4 v 0. 9 setup time start condition t su:sta vcc ? 3.0 v 0.3 ns vcc > 1.8v 0.4 vcc >1.4 v 0.5 data hold time t hd:dat vcc ? 3.0 v 0.3 ns vcc > 1.8v 0.4 vcc >1.4 v 0.5 data setup time t su:dat vcc ? 3.0 v 0.3 ns vcc > 1.8v 0.4 vcc >1.4 v 0.5 data valid time t vd:dat vcc ? 3.0 v 1.2 s vcc > 1.8v 1.5 vcc >1.4 v 4.0 data valid acknowledge time t vd:ack vcc ? 3.0 v 0.9 s vcc > 1.8v 1.1 vcc >1.4 v 3.5 rise time of both sda and scl signals t r vcc ? 3.0 v 200 ns vcc > 1.8v 300 vcc >1.4 v 1000 fall time of both sda and scl signals (see note 1) t f vcc ? 3.0 v 200 ns vcc > 1.8v 300 vcc >1.4 v 400 setup time (repeated) stop condition t su:sto vcc ? 3.0 v 0.3 ns vcc > 1.8v 0.4 vcc >1.4 v 0.5 length of spikes suppres sed by the input filter on scl an d sda t sp 50 ns capacitive load for each bus line c b 200 pf i/o capacitance (sda, scl) c i/o 10 pf table 13 : i2c ac characteristics parameters are guaranteed by design. they are n ot tested in production . calculation of external pull C up resistor
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 23 www.em microelectronic.com t he following conditions have to be met: rise time is equal to 0.847 r pu ( c b + n * c i/o ) ? r pu < t r max / (0.847 ( c b + n c i/o ) ), w here n is total number of i/o pins connected to the corresponding bus line. (t r in ns, c in pf, r in k) the minimum value of the pullup resistor value can be calculated with the i ol value of the sda output: r pu = ( vcc C v ol ) / i ol ( i ol : see table 7, page 5, output parameters; e.g. 5ma at v cc = 5.0v, with v ol = 0.8v ) figure 8 : i2c timing 10.2 i2c specification compliance em3027 device with i2c serial in terface was designed in compliance with philips semiconductors i 2 c - bus specification um10204 (rev. 03 C 19 june 2007), fast - mode class (u p to 400kbit/s). device address consists of 7 bits. clock stretching is not supported. brief manual to i2c interface read and write transmissions is to be found in 7.1 . there are, however, the following dis crepancies between i2c specification and em3027 interface: 1) falling time on sda driven by em3027 can be shorter than 20 + 0.1* c b ns. (c b is total capacitive load for sda bus line in pf) in other words, slope control of falling edges on sda is missing. 2) so me tim ing parameters differ from the original i2c specification C refer to table 13 . scl start sda t buf t hd:sta t low t r t hd:dat t high t f t su:dat t su:sta t su:sto stop
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 24 www.em microelectronic.com 10.3 ac characteristics C spi v ss = 0v and t a = - 40 to +125c, unless otherwise specified parameter symbol conditions min typ max units sck clock f requency f sck vcc ? 3.0v 1 mhz vcc > 1.8v 600 khz vcc > 1.4 v 200 data to sck setup t dc vcc ? 3.0v 20 ns vcc > 1.8v vcc > 1.4 v sck to data hold t cdh vcc ? 3.0v 200 ns vcc > 1.8v 300 vcc > 1.4 v 500 sck to data valid t cdd vcc ? 3.0v 350 ns vcc > 1.8v 650 vcc > 1.4 v 1300 sck low time t cl vcc ? 3.0v 400 ns vcc > 1.8v 700 vcc > 1.4 v 1500 sck high time t ch vcc ? 3.0v 400 ns vcc > 1.8v 700 vcc > 1.4 v 1500 sck rise and fall t r , t f vcc ? 3.0v 200 ns vcc > 1.8v 800 vcc > 1.4 v cs to sck setup t cc vcc ? 3.0v 100 ns vcc > 1.8v vcc > 1.4 v sck to cs hold t cch vcc ? 3.0v 200 ns vcc > 1.8v 300 vcc > 1.4 v 500 cs inactive time t cwl vcc ? 3.0v 200 ns vcc > 1.8v 300 vcc > 1.4 v 400 cs to output high impedance t cdz vcc ? 3.0v 50 ns vcc > 1.8v 100 vcc > 1.4 v 200 table 14 : spi ac characteristics parameters are guaranteed by design. they are n ot tested in production . 1 ) max. bus capacitance on so line shall be lower than 100pf when vcc > 1.8v and lower than 50pf when vcc < 1.8v . 2 ) spikes on sck signal shorter than 2 0ns are suppressed.
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 25 www.em microelectronic.com figure 9 : spi r ead timing figure 10 : spi w rite timing t cdh t ch t r t cl t f t cch t dc si sck cs t cc t cwl a0 r/w so hiz spi master writes address and data: d7 d0 so hiz t cdz t cdd d0 d7 spi master writes address, em3027 outputs data: t cdh t ch t r t cl t f t cch t dc si sck cs t cc t cwl a0 r/w si data are don't care when so outputs data
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 26 www.em microelectronic.com 11 package information 11.1 tssop - 08 /14 n 1 . 0 0 d i a . 7 t o p v i e w 1 2 3 1 . 0 0 1 . 0 0 d a - b c 0 . 2 0 b a d e 1 e 4 e / 2 4 4 5 2 x n / 2 t i p s c o m m o n d i m e n s i o n s m i n . m a x . n o n e t d 5 n o t e v a r i - a t i o n s s e e v a r i a t i o n s l 1 e e e 1 d c b a a n o m . a 2 0 . 6 5 b s c 0 . 9 0 - - 0 . 2 0 0 . 3 0 0 . 1 5 1 . 1 0 0 . 0 5 0 . 1 9 0 . 0 9 4 . 3 0 4 . 4 0 4 . 5 0 0 . 5 0 0 . 6 0 6 . 4 0 b s c 0 . 7 0 1 4 b 1 0 . 1 9 0 . 2 2 0 . 2 5 0 . 0 9 0 . 1 6 c 1 0 . 8 5 0 . 9 5 b b b 0 . 1 0 l s o b y m 0 . 0 7 6 a a a 6 5 5 9 7 0 . 1 2 7 p p 1 m a x . m a x . 3 . 1 3 . 0 0 p 1 p a n s e e v a r i a t i o n s s e e v a r i a t i o n s s e e v a r i a t i o n s 8 7 8 1 . 5 9 3 . 2 m i n . n o m . m a x . 2 . 9 0 3 . 0 0 3 . 1 0 4 . 9 0 5 . 0 0 5 . 1 0 c e n d v i e w s e e d e t a i l " a " c l b b d a e a 1 5 a 2 s e a t i n g p l a n e 8 a a a c m b b b a - b 9 0 . 0 5 3 h c d c c b e v e n l e a d s i d e s t o p v i e w e / 2 x t o p v i e w o d d l e a d s i d e s x = a a n d b x ( v i e w r o t a t e d 9 0 c . w . ) d e t a i l ' a ' 0 . 2 5 h 6 l l i n e p a r t i n g ( 1 4 ) ( 1 4 ) ( 1 . 0 0 ) a l l d i m e n s i o n s i n m i l l i m e t e r s 8 . 7 . 1 . d i e t h i c k n e s s a l l o w a b l e i s 0 . 2 7 9 0 . 0 1 2 7 p r o t r u s i o n . a l l o w a b l e d a m b a r p r o t r u s i o n s h a l l b e t h e l e a d w i d t h d i m e n s i o n d o e s n o t i n c l u d e d a m b a r 9 . o n e a n o t h e r w i t h i n 0 . 0 7 6 m m a t s e a t i n g p l a n e . 6 . 5 . 3 . 2 . f o r m e d l e a d s s h a l l b e p l a n a r w i t h r e s p e c t t o t e r m i n a l p o s i t i o n s a r e s h o w n f o r r e f e r e n c e o n l y . f o r s o l d e r i n g t o a s u b s t r a t e . d i m e n s i o n i s t h e l e n g t h o f t e r m i n a l o n e p e r s i d e . f l a s h o r p r o t r u s i o n s s h a l l n o t e x c e e d 0 . 1 5 m m o n d a n d 0 . 2 5 m m p r o t r u s i o n s , a n d a r e m e a s u r e d a t t h e b o t t o m p a r t i n g l i n e . m o l d " d " & " e 1 " a r e r e f e r e n c e d a t u m a n d d o n o t i n c l u d e m o l d f l a s h o r d a t u m p l a n e h l o c a t e d a t m o l d p a r t i n g l i n e a n d c o i n c i d e n t n o t e s : d i m e n s i o n i n g & t o l e r a n c e s p e r a s m e . y 1 4 . 5 m - 1 9 9 4 . 0 . 0 7 m m t o t a l i n e x c e s s o f t h e l e a d w i d t h d i m e n s i o n a t m a x i m u m m a t e r i a l c o n d i t i o n . d a m b a r c a n n o t b e l o c a t e d o n t h e l o w e r r a d i u s o r t h e f o o t . m i n i m u m s p a c e b e t w e e n p r o t r u s i o n s a n d a n a d j a c e n t l e a d s h o u l d b e 0 . 0 7 m m d a t u m a - b a n d d t o b e d e t e r m i n e d w h e r e c e n t e r l i n e 4 . b e t w e e n l e a d s e x i t s p l a s t i c b o d y a t d a t u m p l a n e h . w i t h l e a d , w h e r e l e a d e x i t s p l a s t i c b o d y a t b o t t o m o f p a r t i n g l i n e . a
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 27 www.em microelectronic.com 11.2 so - 8 c b o t t o m v i e w p a r t i n g l i n e s i d e v i e w 4 - d - . 0 1 0 + d m t e e 5 l d e t a i l a a s e e d e t a i l a - t - 1 a s b a s e a t i n g p l a n e 3 8 2 a e n d v i e w 4 - e - h x 4 5 t o p v i e w 3 e / 2 6 n h + m e m . 0 1 0 s e e n o t e 9 2 1 a d d i t i o n o o c " x " d i a . e j e c t o r p i n . d / 2 2 . 1 6 0 0 . 4 1 0 . 2 5 5 . 8 4 3 . 8 1 0 . 3 5 0 . 1 2 7 1 . 5 5 m i n . 0 . 1 9 1 . 4 0 x l 1 n h e h e d c b a a o l y m b s a 2 2 . 5 4 2 . 3 6 3 5 4 . 9 8 4 . 8 0 8 0 . 8 9 0 . 4 1 6 . 2 0 3 . 9 9 0 . 2 0 0 . 4 9 0 . 2 5 1 . 7 3 c o m m o n d i m e n s i o n s m a x . o n e t 1 . 2 7 b s c 8 n o m . 1 . 6 3 0 . 1 5 0 . 4 1 3 . 9 4 5 . 9 9 0 . 3 3 0 . 6 4 5 4 . 9 3 0 . 2 5 1 . 4 7 1 . 5 5 t h i s t a b l e i n m i l l i m e t e r s a 1 . m a x i m u m d i e t h i c k n e s s a l l o w a b l e i s . 0 1 5 . 9 . t h e a p p e a r a n c e o f p i n # 1 i . d o n t h e 8 l d i s o p t i o n a l , 8 . f o r m e d l e a d s s h a l l b e p l a n a r w i t h r e s p e c t t o 7 . t e r m i n a l p o s i t i o n s a r e s h o w n f o r r e f e r e n c e o n l y 6 . " n " i s t h e n u m b e r o f t e r m i n a l p o s i t i o n s . 5 . " l " i s t h e l e n g t h o f t e r m i n a l f o r 4 . " d " & " e " a r e r e f e r e n c e d a t u m s a n d d o n o t 3 . " t " i s a r e f e r e n c e d a t u m . 2 . d i m e n s i o n i n g & t o l e r a n c e s p e r a n s i . y 1 4 . 5 m - 1 9 8 2 . n o t e s : r o u n d t y p e o n s i n g l e l e a d f r a m e a n d r e c t a n g u l a r o n e a n o t h e r w i t h i n . 0 0 3 i n c h e s a t s e a t i n g p l a n e . t y p e o n m a t r i x l e a d f r a m e . s o l d e r i n g t o a s u b s t r a t e . . 0 1 0 i n c h e s a t w i n d o w d o e s i n c l u d e m o l d m i s m a t c h a n d a r e m e a s u r e d p r o t r u s i o n s s h a l l n o t e x c e e d 0 . 0 0 6 i n c h e s a t e n d a n d a t t h e m o l d p a r t i n g l i n e . m o l d f l a s h o r i n c l u d e m o l d f l a s h o r p r o t r u s i o n s , b u t
em3027 copyright ? 2013 , em microelectronic - marin sa 3027 - ds.doc , version 8.0 , 25 - jan - 13 28 www.em microelectronic.com 12 ordering information s tandard versions part number package functional temperature interface delivery form marking line 1 line 3 em3027idxws8 - 40 +125c i2c sawn 8 mils on blue foil em3027idxso08b+ so8 - 40 +125c i2c tape & reel, 2500 pcs 3027 x5 em3027idsso08b+ s o8 - 40 +85c i2c tape & reel, 2500 pcs 3027 s5 em3027sdxtp14b+ tssop14 - 40 +125c spi tape & reel, 3500 pcs 3027 x6 em3027sdstp14b+ tssop14 - 40 +85c spi tape & reel, 3500 pcs 3027 s6 please contact sales office for other versions not shown here and f or availability of non standard versions. em microelectronic - marin sa (em) makes no warranties for the use of em products, other than those expressly contained in em's applicable general terms of sale, located at http://www.emmicroelectron ic.com. em assumes no responsibility for any errors which may have crept into this document, reserves the right to change devices or specifications detailed herein at any time without not ice, and does not make any commitment to update the information conta ined herein. no licenses to patents or other intellectual property rights of em are granted in connection with the sale of em products, ne ither expressly nor implicitly. in respect of the intended use of em products by customer, customer is solely resp onsible for observing existing patents and other intellectual property rights of third parties and for obtaining, as the case may be, the necessary licenses. important note: the use of em products as components in medical devices and/or medical applicatio ns, including but not limited to, safety and life supporting systems, where malfunction of such em products might result in damage to and/or injury or deat h of persons is expressly prohibited, as em products are neither destined nor qualified for use as co mponents in such medical devices and/or medical applications. the prohibited use of em products in such medical devices and/or medical applications is exclusively at the risk of the customer part number package em3027 = rtc so8b= 8 pin so8 tape tp14= 14 pin tssop14 tape ws8= wafer sawn 8 mils temperature compensation functional temperature = s default temp. compensation = d extended temperature = x (factory standard) so8b x em3027 i d s i i2c bus = interface sp i bus =


▲Up To Search▲   

 
Price & Availability of EM3027IDSSO8B

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X